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ABSTRACT

This paper deals with the problem of estimacing simultaneously the
parameters (cell probabilities) of m > 2 independent multinomial distri-
butions, with respect to a quadratic loss function. An empirical Bayes
estimator is given which is shown to have smaller risk than the maximum

likelihood estimator for sufficiently large values of m, at all points of

the parameter space outside its boundary.
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1. INTRODUCTION

The multinomial distribution arises in various statistical -analyses.
In this paper we cousider the problem of estimating simultaneously the
parameters (cell probabilities) of m > 2 independent multinomial distri-
butions. A new estimator is obtained from empirical Bayes considerationms,
where the estimate of the parameters of one distribution depends on the
observations taken from the other distributions. We compare the new esti-
mator with the maximum likelihood estimator (MLE) and show that for large
values of m the risk of the new estimator is smaller than the risk of the
MLE at all points excluding a small subset of the parameter space.

The problem of estimating the parameters of a multinomial distribu-
tion has been considered by various authors. Alam (1979) and Johnson
(1971) have shown that for m = 1 the MLE is admissible with respect to the
sum of squared errors as the loss function. The estimation of multinomial
ptobabilities has been considered from a decision theoretic point of view
by Steinhaus (1957), Trybula (1958) and Rutkowska (1977). 1In a recent
paper Olkin and Sobel (1979) have discussed the problem of estimating the
parameters of m > 2 binomial distributions.

In Section 2 we introduce the new empirical Baves estimator. In Sec-

tion 3 we compare the risk of the empirical Bayes estimator with the MLE.
2. EMPIRICAL BAYES ESTIMATOR

= 1,...,m denote independent observations
K < =
I=171}

Let Py = (pil""’piK) denote the vector of cell probabilities associated

K
3=1P13

Let x, = (x

1 12k 1

from m multinomial distributions, each with K > 2 cells, where ) n.

with the ith distribution, where p >0, j=1,...,K and =1,
ij




For estimating the cell probabilities simultaneously, let the loss function

be given by

L(s,P) = & X Z (s

-p
® a1 gu1 1 o

1]

First we obtain a Bayes estimator of P, as follows. Suppose that the

i where §,, denotes the estimate of p,,, 6§ = (§,.,) and P = (p_.).
: ij ij i)

parameters of the m distributions are distributed a priori, independently
and identically according to the Dirichlet distribution, given by the den-

sity function

P(KA)K 8 )A-l
T

(01... K

£(8,2) =

<1, =1,...,K and =],
3 ] ’ Lms

A Bayes estimator of P with respect to the Dirichlet prior distribution 1is

where A is a positive number, 0 < 8

given by 6 = (6 ), where

1j

*
8 = (x

1] +1)/ (n+KA) . 2.1)

1]
K 2 1 om m K 2 .
Let q = 1l - Zj-lpij’ q= E-Zislqi and y = Zi-l j-lxij' The risk of
G*is given by

R(S™) = [(a-22k%)q + K(R-1)1%] (a+k) 2. (2.2)

*
The value of A\ minimizing R(§ ) is equal to XO’ given by

Ag = q(R-1-Kq) "L, (2.3)
* *
Let R denote the value of R(§ ) for ) = Ao. We have
R a3 < 1 - r(s%) (2.4)

n+KA0




where 60 denotes the MLE, given by ng = xij/n. An unbiased estimator of ;
q is given by a = (mnz-y)/mn(n—l). Substituting é for q in (2.3) we get an :

estimated value of A, given by

A= qk-1-k T (2.5)

= » for q = (K-1)/K.

Substituting i for A in (2.1), we obtain an empirical Bayes estimator §

of P, given by

S'j = (x, +4)/(n+K}) (2.6)

1

ii
= 1/K for A = o,

ks

The quantity 9y is a measure of diversity of the ith multinomial distri-
bution. It is equal to zero when the probability mass of the distribution is
concentrated in a single cell. It achieves its maximum value equal to (K-1)/K

when the probability mass is equally distributed among the K cells of the :

distribution. The value of q represents the average diversity of the m mul-
tinomial distributions. In the following section we show that the empirical
Bayes estimator § has smaller risk than the MLE for sufficiently large values
of qu. Therefore, in practice when the parameters of a large number of mul-~
tinomial distributions are simultaneously estimated for which the average
diversity is unlikely to be very small, the empirical Bayes estimator should
be preferred to the MLE.

The preceding observation is supported by the numerical results shown
in Table 1 below. The table gives the empirical values of R(S), R(do) and
qu for certain values of m, n, K and randomly chosen values of P, The value
of R(S) and R(so) for any fixed value of P was obtained from simulation bv

the Monte Carlo method. It is seen from the table that R(é) < R(So) in all




the observed cases except one when m = 5, n = 10, K = 2 for which R(S) =
.0247 and R(SO) = ,0241. This case corresponds to the smallest value of

mq’ = 0.2856 given in the table.
3. RISK OF &

*
From (2.2) it is seen that R(S ) first decreases then increases as A

varies from 0 to ». It is equal to % and Eil - q for A = 0 and », respec~-
: * 0 - .- q . K-1
tively. Hence, R(& ) < R(§) for all positive values of 1 if o> - q.
Therefore, we shall assume that
g
n(K-1) ) (3.1) ]

9= K(n+l)

The value of R(S) for large m is given as follows: From (2.3) and

(2.5) we get

A - - (K-l) (é"Q)
A = Ao * W1-Kq) (K-1-Kq) (3.2)

Now, Ea 2 q and Var(d)_i - - bv Lemma 3.1 below. Therefore, for large m

m(n-1)
B = Ay + (K(K-1)/ (K-1Kq) *IVar (@) + o(D) and  (3.3)
EG-1p? = (&1 ®-1-k) “1Var @) + o). (3.4)

The value of R(g) as obtained from (2.6) by direct computation, is

given after simplification by

R(§) = R + nx(n+xxo)'zz(n+xi)‘z(n(x-l)-x(n-l)&)(i-xo)z (3.5)
(K=1)Aj+(n=1)q~(a+KA)q

K
o K\o

+ znx(n+xx0)‘1z(n+xi)’1(i-xo)[ + 2)

1 tm K
where Z = = )., zj-l pij(xij-npij)' Now EZ = 0 and




-2 m K 3 @ 5
Var(z) =mm (] ] py- 1 (e (3.6)
i=1 j=1 i=1

<2 %
< nm q, (1-q.)
=1 1 1

<

q.

ERE

Using (3.3), (3.4), and (3.6) in (3.5) we get

- *
R =R+ 9 + o(d) (.7
m m
1 c 1
= q(n+KA0 + m) + o(m)
where ¢ = c(P) is a number less than Kzn2 in absolute value. Then
0 2 1 1 c 1
R(67) ~ R(&) q(n - L - m) + O(m) (3.8)
KA

0

c 1
Sy Tw oW

2K -1 -1 c 1
= q [n(n+xx (K-1-Kq) ~ - mq] + O(m).

0)
By virtue of the inequality (3.1) the quantity inside the square bracket is

minorized by

K <

2n?(x-1) "
Therefore, we have the following result.
Theorem 3.1. The empirical Bayes estimator § has smaller risk than
the maximum likelihood estimator 60 for sufficiently large values of qu.
Remark. It has been mentioned in the introduction that the MLE is
admissible with respect to the quadratic loss function when m = 1. It is
also noted by Johnson (1971) that the admissibility of the MLE is essentially

for the reason that its risk is small near the boundary of the parameter




space, given by q = 0. Therefore, the condition of Theorem 3.1 that the
value of q should be sufficiently large for the risk of § to be smaller
than the risk of 60 is consistent with that observation. Johnson has also
noted that there is no Stein-effect for m > 1, that is, the MLE cannot be
improved upon by letting the estimate of parameters of one distribution de-
pend on the observations taken from the other distributions. Therefore,
we do not expect that 8 has a uniformly smaller risk than 60.
Finally, we give the lemma which was used in the proof of Theorem 3.1.
Lemma 3.1. Var(a) 5-5?§§T7

Proof: We have

K K K ,
Var( z x%.) =E(V x?.)2 (E Z x%.)‘
ij RO & ij
J'=1 j=1 j:l
K K
< (E] xi.)(nz—E ¥ xi.)
=1 M j=1 M
K
<a?(®E ] x2,)
j=1 1
= n3(n-l)qi.

Summing the above inequality for i = 1,...,m we have
3
Var(y) < mn” (n-1)q.

Therefore

) < —B4__
var(Q) < gods . (3.9)
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